Determination of Spin-coupling Constants in Di-t-butylfluorophosphine by Heteronuclear INDOR-technique

By C. SCHUMANN and H. DREESKAMP*

(Institut für Physikalische Chemie der Universität, 7 Stuttgart 1, Wiederholdstrasse 15, Germany)

and O. STELZER

(Institut für Anorganische Chemie der Technischen Universität, 33 Braunschweig, Pockelstrasse 4, Germany)

Summary The spin-coupling constants in di-t-butylfluorophosphine and their signs relative to ${}^{1}J_{\rm CH} > 0$ have been investigated by a heteronuclear INDORtechnique showing that ${}^{1}J_{PF} < 0$ and ${}^{1}J_{PC} < 0$.

For a satisfactory understanding of the mechanism of indirect spin coupling, a complete set of empirical coupling constants, including signs for different nuclei and bonding situations, appears desirable.^{1,2} By heteronuclear double resonance a negative sign of ${}^{1}J_{PF}$ in 3- and 4-co-ordinate phosphorus compounds has been found, assuming a positive sign of ${}^{1}J_{PH}$ or ${}^{3}J_{HH}$, ${}^{3-5}$ while a positive sign of ${}^{1}J_{PC}$ in halogen-substituted phosphine has been postulated.6 Since the validity of these assumptions may be disputed, a sign determination of the coupling constants, relative to ${}^{1}J_{CH}$ whose sign is generally accepted to be positive,² was made in But₂PF by heteronuclear double resonance with a modified Varian-60 MHz spectrometer, as previously described.⁷ The compound⁸ was used with 20 vol % C₆H₆ and 1 vol % Me4Si as internal standards at ambient temperature (30°).

Coupling constants and chemical shifts (from Me₄Si) are given in the Table. The nuclei perturbed and the coupling constants relative to which a sign determination was made are listed in the second and third columns respectively. In the INDOR experiments a ¹H resonance was monitored while transitions of other nuclei were perturbed by a field derived from a General Radio frequency synthesizer.

Relative to ${}^{1}J_{CH} > 0$, the one-bond P-F coupling was found to be negative, confirming earlier assumptions.3-5 ${}^{1}J_{PC}$ was found to be negative, in contradiction to the hypothesis advanced by Mavel and Green⁶ but in analogy to the negative sign of ${}^{1}J_{PC}$ in PMe₃.⁹ It thus appears doubtful

whether the theory suggested by Harris and Finer¹⁰ to explain the sign reversal of ${}^{1}J_{PP}$ can be extended to the case of ${}^{1}J_{PC}$. Magnitudes and signs of ${}^{1}H_{-}$, ${}^{13}C_{-}$ and ${}^{31}P_{-}$ long-range coupling constants were found to be similar to those found earlier in t-butylphosphines.9

Spin-coupling constants in Hz with signs relative to ${}^{1}J_{CH} > 0$ and chemical shifts relative to v (Me₄Si) = 1 in But₂PF

${}^{1}J_{ m CH} = + \ 126 \cdot 45 \pm 0.1 \ {}^{1}J_{ m PC} = - \ 34 \cdot 6 \pm 0.2 \ {}^{1}J_{ m PF} = - \ 873 \cdot 6 \pm 0.2$;;	{C(PC)} {F}	;;	³ Ј _{РН} ³ Ј _{РН}
${}^{2}J_{ m CH}=-3\cdot 6\pm 0\cdot 2^{a}$ ${}^{2}J_{ m PC}=+16\cdot 4\pm 0\cdot 2$ ${}^{2}J_{ m FC}=+9\cdot 9\pm 0\cdot 2$;;	{P} {C(PC)}	;;	¹ Јсн ⁴ Јгн
${}^{8}J_{CH} = +$ 5.2 \pm 0.2a ${}^{8}J_{PH} = +$ 11.29 \pm 0.02 ${}^{8}J_{FC} = +$ 3.6 \pm 0.2	;;	$\begin{array}{l} \{\mathrm{C}(\mathrm{CH}_3) \\ \{\mathrm{C}(\mathrm{CH}_3) \end{array} \end{array}$;;	² J _{РС} 4J _{FH}
${}^{4}J_{ m HH}=+~~0.3~\pm~0.1\ {}^{4}J_{ m FH}=+~~1.74~\pm~0.02$;;	$\substack{ \{\mathrm{C}(\mathrm{CH}_3) \} \\ \{\mathrm{P}\} }$;;	³ Јсн ¹ Јрг
$\begin{array}{llllllllllllllllllllllllllllllllllll$		(CH ₃) (C–P)		

^a Sign assumed by analogy with neopentane.¹¹

We thank the Deutsche Forschungsgemeinschaft for the loan of the spectrometer.

(Received, March 18th, 1970; Com. 386.)

- ¹H. Dreeskamp, Proc. XIII Coll. Ampere, Leuven, 1964, North Holland Publishing Co., 1965, p. 400.
- ²C. J. Jameson and H. S. Gutowsky, J. Chem. Phys., 1969, 51, 2790.
 ³ R. B. Johannesen, J. Chem. Phys., 1967, 47, 3088.
 ⁴ R. R. Dean and W. McFarlane, Chem. Comm., 1967, 840.

- ⁵ S. L. Manatt, D. D. Elleman, A. H. Cowley, and A. B. Burg, J. Amer. Chem. Soc., 1967, 89, 4544. ⁶ G. Mavel and M. J. Green, Chem. Comm., 1968, 742.
- ⁷ K. Huldenbrand and H. Dreeskamp, Z. phys. Chem. (Frankfurt), 1970, in the press.
 ⁸ M. Fild and R. Schmutzler, J. Chem. Soc. (A), 1970, in the press.
- ⁹ H. Elser and H. Dreeskamp, Ber. Bunsengesellschaft Phys. Chem., 1969, 73, 619.
- ¹⁰ R. K Harris and E. G. Finer, Chem. Comm., 1968, 110.
- ¹¹ H. Dreeskamp, Z. phys. Chem. (Frankfurt), 1968, 59, 321.